Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Front Chem ; 12: 1361082, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741671

RESUMEN

SARS-CoV-2 infection affects and modulates serum as well as hematological parameters. However, whether it modifies these parameters in the existing disease conditions, which help in the erection of specific treatments for the disease, is under investigation. Here, we aimed to determine whether serum and hematological parameters alteration in various diseases, diabetes mellitus (DM), hypertension (HTN), ischemic heart disease (IHD) and myocardial infarction (MI) conditions correlate and signal SARS-CoV-2 infection, which could be used as a rapid diagnosis tool for SARS-CoV-2 infection in disease conditions. To assess the projected goals, we collected blood samples of 1,113 male and female patients with solo and multiple disease conditions of DM/HTN/IHD/MI with severe COVID-19, followed by biochemical analysis, including COVID-19 virus detection by RT-qPCR. Furthermore, blood was collected from age-matched disease and healthy individuals 502 and 660 and considered as negative control. In our results, we examined higher levels of serum parameters, including D-dimer, ferritin, hs-CRP, and LDH, as well as hematological parameters, including TLC in sole and multiple diseases (DM/HTN/IHD/MI) conditions compared to the control subjects. Besides, the hematological parameters, including Hb, RBC, and platelet levels, decreased in the patients. In addition, we found declined levels of leukocyte count (%), lymphocyte (%), monocyte (%), and eosinophil (%), and elevated level of neutrophil levels (%) in all the disease patients infected with SARS-CoV-2. Besides, NLR and NMR ratios were also statistically significantly (p < 0.05) high in the patients with solo and multiple disease conditions of DM/HTN/IHD/MI infected with the SARS-CoV-2 virus. In conclusion, rapid alteration of sera and hematological parameters are associated with SARS-CoV-2 infections, which could help signal COVID-19 in respective disease patients. Moreover, our results may help to improve the clinical management for the rapid diagnosis of COVID-19 concurrent with respective diseases.

2.
Heliyon ; 10(9): e30453, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38720726

RESUMEN

Climate change results in continuous warming of the planet, threatening sustainable crop production around the world. Amaranth is an abiotic stress-tolerant, climate-resilient, C4 leafy orphan vegetable that has grown rapidly with great divergence and potential usage. The C4 photosynthesis allows amaranth to be grown as a sustainable future food crop across the world. Most amaranth species grow as weeds in many parts of the world, however, a few amaranth species can be also found in cultivated form. Weed species can be used as a folk medicine to relieve pain or reduce fever thanks to their antipyretic and analgesic properties. In this study, nutritional value, bioactive pigments, bioactive compounds content, and radical scavenging potential (RSP) of four weedy and cultivated (WC) amaranth species were evaluated. The highest dry matter, carbohydrate content, ash, content of iron, copper, sodium, boron, molybdenum, zinc, ß-carotene and carotenoids, vitamin C, total polyphenols (TP), RSP (DPPH), and RSP (ABTS+) was determined in Amaranthus viridis (AV). On the other hand, A. spinosus (AS) was found to have the highest content of protein, fat, dietary fiber, manganese, molybdenum, and total flavonoids (TF). In A. tricolor (AT) species the highest total chlorophyll, chlorophyll a and b, betaxanthin, betacyanin, and betalain content was determined. A. lividus (AL) was evaluated as the highest source of energy. AV and AT accessions are underutilized but promising vegetables due to their bioactive phytochemicals and antioxidants.

3.
Heliyon ; 10(8): e30105, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38699715

RESUMEN

In this study, green synthesis of gold nanoparticles (AuNPs) using aqueous extract from Hymenaea courbaril resin (HCR) is reported. The successful formation, functional group involvement, size, and morphology of the subject H. courbaril resin mediated gold nanoparticles (HCRAuNPs) were confirmed by Ultra Violet-Visible (UV-vis) spectroscopy, Fourier-Transform Infrared spectroscopy (FTIR), and Transmission Electron Microscopy (TEM) techniques. Stable and high yield of HCRAuNPs was formed in 1:15 (aqueous solution: salt solution) reacted in sunlight as indicated by the visual colour change and appearance of surface Plasmon resonance (SPR) at 560 nm. From the FT-IR results, the phenolic hydroxyl (-OH) functional group was found to be involved in synthesis and stabilization of nanoparticles. The TEM analysis showed that the particles are highly dispersed and spherical in shape with average size of 17.5 nm. The synthesized HCRAuNPs showed significant degradation potential against organic dyes, including methylene blue (MB, 85 %), methyl orange (MO, 90 %), congo red (CR, 83 %), and para nitrophenol (PNP, 76 %) up to 180 min. The nanoparticles also demonstrated the effective detection of pharmaceutical pollutants, including amoxicillin, levofloxacin, and azithromycin in aqueous environment as observable changes in color and UV-Vis spectral graph.

4.
Sci Rep ; 14(1): 9378, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654029

RESUMEN

Uneven rainfall and high temperature cause drought in tropical and subtropical regions which is a major challenge to cultivating summer mung bean. Potassium (K), a major essential nutrient of plants can alleviate water stress (WS) tolerance in plants. A field trial was executed under a rainout shelter with additional K fertilization including recommended K fertilizer (RKF) for relieving the harmful impact of drought in response to water use efficiency (WUE), growth, yield attributes, nutrient content, and yield of mung bean at the Regional Agricultural Research Station, BARI, Ishwardi, Pabna in two successive summer season of 2018 and 2019. Drought-tolerant genotype BMX-08010-2 (G1) and drought-susceptible cultivar BARI Mung-1 (G2) were grown by applying seven K fertilizer levels (KL) using a split-plot design with three replications, where mung bean genotypes were allotted in the main plots, and KL were assigned randomly in the sub-plots. A considerable variation was observed in the measured variables. Depending on the different applied KL and seed yield of mung bean, the water use efficiency (WUE) varied from 4.73 to 8.14 kg ha-1 mm-1. The treatment applying 125% more K with RKF (KL7) under WS gave the maximum WUE (8.14 kg ha-1 mm-1) obtaining a seed yield of 1093.60 kg ha-1. The treatment receiving only RKF under WS (KL2) provided the minimum WUE (4.73 kg ha-1 mm-1) attaining a seed yield of 825.17 kg ha-1. Results showed that various characteristics including nutrients (N, P, K, and S) content in stover and seed, total dry matter (TDM) in different growth stages, leaf area index (LAI), crop growth rate (CGR), root volume (RV), root density (RD), plant height, pod plant-1, pod length, seeds pod-1, seed weight, and seed yield in all pickings increased with increasing K levels, particularly noted with KL7. The highest grain yield (32.52%) was also obtained from KL7 compared to lower K with RKF. Overall, yield varied from 1410.37 kg ha-1 using 281 mm water (KL1; well-watered condition with RKF) to 825.17 kg ha-1 using 175 mm water (KL2). The results exhibited that the application of additional K improves the performance of all traits under WS conditions. Therefore, mung beans cultivating under WS requires additional K to diminish the negative effect of drought, and adequate use of K contributes to accomplishing sustainable productivity.


Asunto(s)
Sequías , Potasio , Vigna , Vigna/crecimiento & desarrollo , Vigna/genética , Vigna/efectos de los fármacos , Potasio/metabolismo , Agua/metabolismo , Fertilizantes , Nutrientes/metabolismo , Genotipo , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo , Deshidratación , Resistencia a la Sequía
5.
BMC Complement Med Ther ; 24(1): 157, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609946

RESUMEN

BACKGROUND: Oral bacterial infections are difficult to treat due to emergence of resistance against antibiotic therapy. Essential oils are considered emerging alternate therapy against bacterial infections and biofilms. We investigated Citrus bergemia flower essential oil against oral pathogens. METHODS: The essential oil was analsyed using Gas Chromatography(GC-MS), in silico investigations, antioxidant, antimicrobial, antibiofilm and antiquorum sensing assays. RESULTS: Gas Chromatography analysis confirmed presence of 17 compounds including 1,6-Octadien-3-ol,3,7-dimethyl, 48.17%), l-limonene (22.03%) and p-menth-1-ol, 8-ol (7.31%) as major components. In silico analysis showed compliance of all tested major components with Lipinski's rule, Bioavailability and antimicrobial activity using PASS (prediction of activity spectrum of substances). Molecular docking with transcriptional regulators 3QP5, 5OE3, 4B2O and 3Q3D revealed strong interaction of all tested compounds except 1,6-Octadien-3-ol,3,7-dimethyl. All tested compounds presented significant inhibition of DPPH (2,2-diphenyl-1-picrylhydrazyl) (IC50 0.65 mg/mL), H2O2 (hydrogen peroxide) (63.5%) and high FRAP (ferrous reducing antioxidant power) value (239.01 µg). In antimicrobial screening a significant activity (MIC 0.125 mg/mL) against Bacillus paramycoides and Bacillus chungangensis was observed. Likewise a strong antibiofilm (52.1 - 69.5%) and anti-QS (quorum sensing) (4-16 mm) activity was recorded in a dose dependent manner. CONCLUSION: It was therefore concluded that C. bergemia essential oil posess strong antioxidant, antimicrobial and antibiofilm activities against tested oral pathogens.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Citrus , Aceites Volátiles , Antioxidantes/farmacología , Peróxido de Hidrógeno , Simulación del Acoplamiento Molecular , Aceites Volátiles/farmacología , Antiinfecciosos/farmacología , Flores
6.
Front Vet Sci ; 11: 1380203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655530

RESUMEN

Introduction: Haemonchus contortus (H. contortus) is a blood-feeding nematode causing infectious disease haemonchosis in small ruminants of tropical and subtropical regions around the world. This study aimed to explore the prevalence and phylogeny of H. contortus in small ruminants using the internal transcribed spacer-2 (ITS-2) gene. In addition, a comprehensive review of the available literature on the status of H. contortus in Pakistan was conducted. Methods: Fecal samples were collected from sheep and goats (n = 180). Microscopically positive samples were subjected to DNA extraction followed by PCR using species-specific primers. Results: The overall prevalence of H. contortus was 25.55% in small ruminants. The prevalence of H. contortus was significantly associated with months and area. The highest occurrence of haemonchosis was documented in July (38.70%), whereas the lowest occurred in December (11.11%), with significant difference. The prevalence was highest in the Ghamkol camp (29.4%) and lowest in the arid zone of the Small Ruminant Research Institute (17.5%) (p = 0.01). The results of the systematic review revealed the highest prevalence of haemonchosis (34.4%) in Khyber Pakhtunkhwa (p = 0.001). Discussion: Phylogenetic analysis revealed a close relationship between H. contortus and isolates from Asia (China, India, Iran, Bangladesh, Malaysia, and Mongolia) and European countries (Italy and the United Kingdom). It has been concluded that H. contortus is prevalent in small ruminants of Kohat district and all over Pakistan, which could be a potential threat to food-producing animals, farmers, dairy, and the meat industry. Phylogenetic analysis indicates that H. contortus isolates share close phylogenetic relationships with species from Asia and Europe.

7.
ACS Omega ; 9(14): 16656-16664, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617605

RESUMEN

This study investigated the effects of varying water stress levels on Rosmarinus officinalis essential oils (EO). Three samples (S1, S2, and S3) were cultivated under different stress levels (40, 60, and 80%). Increased water stress led to changes in primary and secondary metabolites, EO contents, and physical properties. Antioxidant activity varied, with S2 exhibiting the highest IC50 value. In terms of antidiabetic activity, S2 showed robust α-amylase inhibition, while S3 displayed a commendable influence. For α-galactosidase inhibition, S3 had a moderate effect, and S2 stood out with increased efficacy. Gas chromatography-mass spectrometry analysis revealed stress-induced changes in major compounds. The study enhances the understanding of plant responses to water stress, with potential applications in antioxidant therapy and diabetes management. The findings emphasize the importance of sustainable water management for optimizing the EO quality in its various uses.

8.
Heliyon ; 10(7): e29286, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38617969

RESUMEN

The strong demand for biological materials in the food industry places chitosan at the forefront of other biopolymers. The present study aims to evaluate the antifungal properties of chitosan extracted from shrimp shell waste (Parapenaeus longirostris) against post-harvest strawberry (Fragaria × ananassa) spoilage fungi. The physicochemical characteristics (DD, Mw, and solubility) of extracted chitosan were determined. In addition, functional characteristics were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The antifungal effect of chitosan on mycelial growth and spore germination of Aspergillus niger, Botrytis cinerea, Fusarium oxysporum, and Rhizopus stolonifer was evaluated. Yield, degree of deacetylation, molecular weight, and solubility were 21.86%, 83.50%, 180 kDa, and 80.10%, respectively. A degree of deacetylation of 81.27% was calculated from the FTIR spectrum and a crystallinity index of 79.83% was determined from the X-ray diffraction pattern. SEM images of extracted chitosan showed a combination of fibrous and porous structure. At 3% chitosan, mycelial growth inhibition rates of A. niger, B. cinerea, F. oxysporum, and R. stolonifer ranged from 81.37% to 92.70%. At the same chitosan concentration, the percentages of spore germination inhibition of the isolated fungi ranged from 65.47% to 71.48%. The antifungal activity was highly dose-dependent. As a natural polymer, chitosan offers a convincing alternative to synthetic antimicrobials for the post-harvest preservation of strawberries. Its potential lies in its ability to inhibit the growth of spoilage fungi.

9.
J Infect Public Health ; 17(6): 994-1000, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38636313

RESUMEN

BACKGROUND: Measles has been a significant public health concern in Pakistan, especially in the Khyber Pakhtunkhwa (KPK) province, where sporadic and silent epidemics continue to challenge existing control measures. This study aimed to estimate the prevalence and investigate the molecular epidemiology of the measles virus (MeV) in KPK and explore the vaccination status among the suspected individuals. METHODS: A cross-sectional study was conducted between February and October 2021. A total of 336 suspected measles cases from the study population were analyzed for IgM antibodies using Enzyme-Linked Immunosorbent Assay (ELISA). Throat swabs were randomly collected from a subset of positive cases for molecular analysis. Phylogenetic analysis of MeV isolates was performed using the neighbor-joining method. The vaccination status of individuals was also recorded. RESULTS: Among the suspected participants, 61.0% (205/336) were ELISA positive for IgM antibodies, with a higher prevalence in males (64.17%) compared to females (57.04%). The majority of cases (36.0%) were observed in infants and toddlers, consistent with previous reports. The majority of IgM-positive cases (71.7%) had not received any dose of measles vaccine, highlighting gaps in vaccine coverage and the need for improved immunization programs. Genetic analysis revealed that all MeV isolates belonged to the B3 genotype, with minor genetic variations from previously reported variants in the region. CONCLUSION: This study provides valuable insights into the genetic epidemiology of the MeV in KPK, Pakistan. The high incidence of measles infection among unvaccinated individuals highlights the urgency of raising awareness about vaccine importance and strengthening routine immunization programs.

10.
ACS Omega ; 9(12): 14419-14428, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559963

RESUMEN

This study investigates the valorization of coal fly ash (FA-C) generated by the Jerada thermal power plant, aiming to address the pressing need for sustainable construction practices and reduced greenhouse gas emissions in the concrete industry. It is widely used as a pozzolanic material. The key objective is to harness the potential of FA-C as a supplementary material in concrete production, which not only reduces costs but also contributes to environmental sustainability. To achieve this objective, various concrete mixtures were formulated, with FA-C serving as a partial substitute for cement at percentages ranging from 15 to 50%. According to ASTM standards, compressive strength tests were conducted on standard-sized cylinders at 7 and 28 days. The results revealed that the blend containing 15% FA-C exhibited the highest compressive strength, indicating its effectiveness as a concrete additive. Furthermore, this study delves into the rheological properties of concrete mixes, an essential aspect of successful concrete processing. It was observed that a higher replacement level of FA-C significantly improved the rheology, leading to reduced water demand and a linear decrease in plastic viscosity over time. The rheological parameters stabilized after a certain period, demonstrating the controllability of concrete flow behavior with FA-C. The investigation also employed three analytical methods-Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM)-to comprehensively analyze both raw materials and processed samples. FTIR analysis highlighted the minimal impact of FA particles on hydration product formation, emphasizing the role of FA-C in enhancing the concrete's strength. XRD analysis confirmed the presence of an amorphous phase crucial for FA's reactivity. SEM observations revealed that concrete with 15% FA-C exhibited a more uniform microstructure with aluminosilicate gel, while 50% FA-C mixes showed increased porosity and nonhomogeneity due to unreacted FA particles.

11.
BMC Complement Med Ther ; 24(1): 173, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658923

RESUMEN

BACKGROUND: Diabetes is a leading health disorder and is responsible for high mortality rates across the globe. Multiple treatment protocols are being applied to overcome this morbidity and mortality including plant-based traditional medicines. This study was designed to investigate the ethnomedicinal status of plant species used to treat diabetes in District Karak, Pakistan. MATERIALS AND METHODS: A semi-structured survey was created to collect data about traditionally used medicinal plants for diabetes and other ailments. The convenience sampling method was applied for the selection of informants. The collected data was evaluated through quantitative tools like frequency of citation (FC), relative frequency of citation (RFC), informant consensus factor (FIC), fidelity level (FL), and use value (UV). RESULTS: A total of 346 local informants were selected for this research. Out of them, 135 participants were men and 211 participants were women. Overall 38 plant species belonging to 29 plant families were used to treat diabetes. The most dominant plant family was Oleaceae having 11 species. Powder form (19%) was the most recommended mode of preparation for plant-based ethnomedicines. Leaves (68%) were the most frequently used parts followed by fruit (47%). The highest RFC was recorded for Apteranthes tuberculata (0.147). The maximum FL was reported for Apteranthes tuberculata (94.4) and Zygophyllum indicum (94.11) for diabetes, skin, and wounds. Similarly, the highest UV of (1) each was found for Brassica rapa, Melia azedarach, and Calotropis procera. Based on documented data, the reported ailments were grouped into 7 categories. The ICF values range between 0.89 (diabetes) to 0.33 (Cardiovascular disorders). CONCLUSION: The study includes a variety of antidiabetic medicinal plants, which are used by the locals in various herbal preparations. The species Apteranthes tuberculata has been reported to be the most frequently used medicinal plant against diabetes. Therefore, it is recommended that such plants be further investigated in-vitro and in-vivo to determine their anti-diabetic effects.


Asunto(s)
Diabetes Mellitus , Etnobotánica , Hipoglucemiantes , Fitoterapia , Plantas Medicinales , Humanos , Pakistán , Plantas Medicinales/química , Femenino , Masculino , Adulto , Persona de Mediana Edad , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Diabetes Mellitus/tratamiento farmacológico , Medicina Tradicional , Anciano , Adulto Joven , Encuestas y Cuestionarios
12.
ACS Omega ; 9(13): 15449-15462, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585053

RESUMEN

Medicinal plant-based cerium oxide nanoparticles (CeO2NPs) possessed excellent antimicrobial properties against multiple strains of Gram-positive and Gram-negative bacteria. The CeO2NPs are popular because their electropositive charged surface causes oxidation of plasma membrane and facilitates the penetration of CeO2NPs inside the pathogen body. In the present research work, CeO2NPs stabilized with Mentha leaf extract; as a result, nanoparticles surface-bonded with various functional groups of phytochemicals which enhanced the therapeutic potential of CeO2NPs. The inhibition percentage of CeO2NPs was evaluated against eight pathogenic Gram-positive bacteria Staphylococcus aureus and Streptococcus epidermidis; Gram-negative bacteria Escherichia coli, Stenotrophomonas maltophilia, Comamonas sp., Halobacterium sp., and Klebsiella pneumoniae; and plant bacteria Xanthomonas sp. The antifungal properties of CeO2NPs were evaluated against three pathogenic fungal species Bipolaris sorokiniana, Aspergillus flavus, and Fusarium oxysporum via the streak plate method. The antimicrobial inhibitory activity of CeO2NPs was good to excellent. The current research work clearly shows that three different medicinal plants Mentha royleana, Mentha longifolia, and Mentha arvensis based CeO2NPs, variation in nanoparticle sizes, and surface-to-volume ratio of green CeO2NPs are three factors responsible to generate and provoke antimicrobial activities of CeO2NPs against human pathogenic bacteria and plant infecting fungi. The results show that CeO2NPs possessed good antimicrobial properties and are effective to use for pharmaceutical applications and as a food preservative because of low toxicity, organic coating, and acceptable antimicrobial properties. This study showed a rapid and well-organized method to prepare stable phytochemical-coated CeO2NPs with three different plants M. royleana, M. longifolia, and M. arvensis with remarkable antibacterial and antifungal characteristics.

13.
Open Life Sci ; 19(1): 20220837, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585628

RESUMEN

The abundance of Panonychus citri McGregor 1916 (Acari: Tetranychidae) and its associated enemies (Euseius stipulatus Athias-Henriot, 1960; Typhlodromus sp.; Phytoseiulus persimilis Athias-Henriot, 1957) was studied on two 12-year-old citrus cultivars, specifically Clementine "Nules" (Citrus Clementina) and Valencia (Citrus sinensis), in the Gharb region of Morocco. Throughout the entire monitoring period in the Valencia late cultivar, the density of the spider mite P. citri on leaves was notably higher at 38.0% (n = 1,212 mobile forms). Predator P. persimilis exhibited a leaf occupancy of 25.0% (n = 812), followed by Typhlodromus sp. at 20.0% (n = 643). Conversely, the abundance of E. stipulatus was lower at 17.0% (n = 538). In the Nules variety, P. citri abundance recorded a higher percentage at 48.0% (n = 1,922). E. stipulatus emerged as the most abundant predator at 23.0% (n = 898), followed by P. persimilis with 16.0% (n = 639). Meanwhile, the population of Typlodromus sp. remained notably low at 13.0% (n = 498). Regarding the fluctuation of the different mites studied on the two cultivars across monitoring dates, the period from May 4 to June 1 was characterized by low temperatures and a diminished presence of mite populations (P. citri, E. stipulatus, Typhlodromus sp., and P. persimilis). However, from June 7 to June 19, characterized by high temperatures, a notable increase in the presence of mite populations was observed. As regards the effect of the variety on the different mites studied, the varietal impact was significant.

14.
Sci Rep ; 14(1): 7875, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570564

RESUMEN

This study examines the manufacturing, characterization, and biological evaluation of platinum nanoparticles, which were synthesized by Enterobacter cloacae and coated with Bovine Serum Albumin (BSA) and Resveratrol (RSV). The formation of PtNPs was confirmed with the change of color from dark yellow to black, which was due to the bioreduction of platinum chloride by E. cloacae. BSA and RSV functionalization enhanced these nanoparticles' biocompatibility and therapeutic potential. TGA, SEM, XRD, and FTIR were employed for characterization, where PtNPs and drug conjugation-related functional groups were studied by FTIR. XRD confirmed the crystalline nature of PtNPs and Pt-BSA-RSV NPs, while TGA and SEM showed thermal stability and post-drug coating morphological changes. Designed composite was also found to be biocompatible in nature in hemolytic testing, indicating their potential in Biomedical applications. After confirmation of PtNPs based nanocaompsite synthesis, they were examined for anti-bacterial, anti-oxidant, anti-inflammatory, and anti-cancer properties. Pt-BSA-RSV NPs showed higher concentration-dependent DPPH scavenging activity, which measured antioxidant capability. Enzyme inhibition tests demonstrated considerable anti-inflammatory activity against COX-2 and 15-LOX enzymes. In in vitro anticancer studies, Pt-BSA-RSV NPs effectively killed human ovarian cancer cells. This phenomenon was demonstrated to be facilitated by the acidic environment of cancer, as the drug release assay confirmed the release of RSV from the NP formulation in the acidic environment. Finally, Molecular docking also demonstrated that RSV has strong potential as an anti-oxidant, antibacterial, anti-inflammatory, and anticancer agent. Overall, in silico and in vitro investigations in the current study showed good medicinal applications for designed nanocomposites, however, further in-vivo experiments must be conducted to validate our findings.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Humanos , Albúmina Sérica Bovina/química , Nanopartículas del Metal/química , Resveratrol/farmacología , Platino (Metal)/farmacología , Platino (Metal)/química , Antioxidantes/farmacología , Simulación del Acoplamiento Molecular , Nanopartículas/química , Antiinflamatorios
15.
16.
PLoS One ; 19(2): e0297367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394191

RESUMEN

Single nucleotide polymorphisms are the most common form of DNA alterations at the level of a single nucleotide in the genomic sequence. Genome-wide association studies (GWAS) were carried to identify potential risk genes or genomic regions by screening for SNPs associated with disease. Recent studies have shown that SCN9A comprises the NaV1.7 subunit, Na+ channels have a gene encoding of 1988 amino acids arranged into 4 domains, all with 6 transmembrane regions, and are mainly found in dorsal root ganglion (DRG) neurons and sympathetic ganglion neurons. Multiple forms of acute hypersensitivity conditions, such as primary erythermalgia, congenital analgesia, and paroxysmal pain syndrome have been linked to polymorphisms in the SCN9A gene. Under this study, we utilized a variety of computational tools to explore out nsSNPs that are potentially damaging to heath by modifying the structure or activity of the SCN9A protein. Over 14 potentially damaging and disease-causing nsSNPs (E1889D, L1802P, F1782V, D1778N, C1370Y, V1311M, Y1248H, F1237L, M936V, I929T, V877E, D743Y, C710W, D623H) were identified by a variety of algorithms, including SNPnexus, SNAP-2, PANTHER, PhD-SNP, SNP & GO, I-Mutant, and ConSurf. Homology modeling, structure validation, and protein-ligand interactions also were performed to confirm 5 notable substitutions (L1802P, F1782V, D1778N, V1311M, and M936V). Such nsSNPs may become the center of further studies into a variety of disorders brought by SCN9A dysfunction. Using in-silico strategies for assessing SCN9A genetic variations will aid in organizing large-scale investigations and developing targeted therapeutics for disorders linked to these variations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Simulación de Dinámica Molecular , Mutación , Algoritmos , Canal de Sodio Activado por Voltaje NAV1.7/genética
17.
Chem Biodivers ; 21(5): e202301399, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38393939

RESUMEN

Imidazoles and phenylthiazoles are an important class of heterocycles that demonstrate a wide range of biological activities against various types of cancers, diabetes mellitus and pathogenic microorganisms. The heterocyclic structure having oxothiazolidine moiety is an important scaffold present in various drugs, with potential for enzyme inhibition. In an effort to discover new heterocyclic compounds, we synthesized 26 new 4,5-diphenyl-1H-imidazole, phenylthiazole, and oxothiazolidine heterocyclic analogues that demonstrated potent α-glucosidase inhibition and anticancer activities. Majority of the compounds noncompetitively inhibited α-glucosidase except for two that exhibited competitive inhibition of the enzyme. Docking results suggested that the noncompetitive inhibitors bind to an apparent allosteric site on the enzyme located in the vicinity of the active site. Additionally, the analogues also exhibited significant activity against various types of cancers including non-small lung cancer. Since tubulin protein plays an important role in the pathogenesis of non-small lung cancer, molecular docking with one of the target compounds provided important clues to its binding mode. The current work on imidazoles and phenylthiazole derivatives bears importance for designing of new antidiabetic and anticancer drugs.


Asunto(s)
Antineoplásicos , Inhibidores de Glicósido Hidrolasas , Simulación del Acoplamiento Molecular , alfa-Glucosidasas , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Humanos , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , alfa-Glucosidasas/metabolismo , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química , Línea Celular Tumoral , Imidazoles/química , Imidazoles/farmacología , Imidazoles/síntesis química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga
18.
Heliyon ; 10(4): e25814, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38375246

RESUMEN

Salvia (Lamiaceae family) is used as a brain tonic to improve cognitive function. The species including S. plebeia and S. moorcroftiana are locally used to cure hepatitis, cough, tumours, hemorrhoids, diarrhoea, common cold, flu, and asthma. To the best of authors' knowledge, no previous study has been conducted on synthesis of S. plebeia and S. moorcroftiana silver nanoparticles (SPAgNPs and SMAgNPs). The study was aimed to synthesize AgNPs from the subject species aqueous and ethanol extracts, and assess catalytic potential in degradation of standard and extracted (from yums, candies, and snacks) dyes, nitrophenols, and antibiotics. The study also aimed at AgNPs as probe in sensing metalloids and heavy metal ions including Pb2+, Cu2+, Fe3+, Ni2+, and Zn2+. From the results, it was found that Salvia aqueous extract afforded stable AgNPs in 1:9 and 1:15 (quantity of aqueous extract and silver nitrate solution concentration) whereas ethanol extract yielded AgNPs in 1:10 (quantity of ethanol extract and silver nitrate solution concentration) reacted in sunlight. The size of SPAgNPs and SMAgNPs determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were 21.7 nm and 19.9 nm, with spherical, cylindrical, and deep hollow morphology. The synthesized AgNPs demonstrated significant potential as catalyst in dyes; Congo red (85 %), methylene blue (75 %), Rhodamine B (<50 %), nitrophenols; ortho-nitrophenol (95-98 %) and para-nitrophenol (95-98 %), dyes extracted from food samples including yums, candies, and snacks. The antibiotics (amoxicillin, doxycycline, levofloxacin) degraded up to 80 %-95 % degradation. Furthermore, the synthesized AgNPs as probe in sensing of Pb2+, Cu2+, and Fe3+ in Kabul river water, due to agglomeration, caused a significant decrease and bathochromic shift of SPR band (430 nm) when analyzed after 30 min. The Pb2+ ions was comparatively more agglomerated and chelated. Thus, the practical applicability of AgNPs in Pb2+ sensing was significant. Based on the results of this research study, the synthesized AgNPs could provide promising efficiency in wastewater treatment containing organic dyes, antibiotics, and heavy metals.

19.
Saudi Pharm J ; 32(1): 101898, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38192384

RESUMEN

Dodonaea viscosa grows widely in Saudi Arabia, but studies evaluating its neuroprotective activity are lacking. Thus, this study aimed to isolate and identify the secondary metabolites and evaluate the neuroprotective effects of D. viscosa leaves. The isolation and identification of phytochemicals were performed using chromatographic and spectroscopic techniques. The neuroprotective potential of the extract was evaluated against focal cerebral ischaemia-reperfusion injury in rat model. Neurobehavioural deficits in the rats were evaluated, and their brains were harvested to measure infarct volume and oxidative biomarkers. Results revealed the presence of three compounds: a novel isoprenylated phenolic derivative that was elucidated as 4-hydroxy-3-(3'-methyl-2'-butenyl) phenyl 1-O-ß-D-apiosyl-(1''' â†’ 6'')- ß-D-glucopyranoside (named Viscomarfadol) and two known compounds (isorhamnetin-3-O-rutinoside and epicatechin (4-8) catechin). Pre-treatment of the rats with the extract improved neurological outcomes. It significantly reduced neurological deficits and infarct volume; significantly reduced lipid peroxidation, as evidenced by decreased malondialdehyde levels; and significantly elevated antioxidant (superoxide dismutase, catalase, and glutathione) activities. These results indicate that D. viscosa is a promising source of bioactive compounds that can improve neurological status, decrease infarct volume, and enhance antioxidant activities in rats with cerebral ischaemic injury. Thus, D. viscosa could be developed into an adjuvant therapy for ischaemic stroke and other oxidative stress-related neurodegenerative disorders. Further investigations are warranted to explore other bioactive compounds in D. viscosa and evaluate their potential neuroprotective activities.

20.
J Biomol Struct Dyn ; 42(4): 1826-1845, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37114651

RESUMEN

Three triorganotin(IV) compounds, R3Sn(L), with R = CH3 (1), n-C4H9 (2) and C6H5 (3), and LH = 4-[(2-chloro-4-methylphenyl)carbamoyl]butanoic acid, were prepared and confirmed by various techniques. A five-coordinate, distorted trigonal-bipyramidal geometry was elucidated for tin(IV) centres both in solution and solid states. An intercalation mode was confirmed for the compound SS-DNA interaction by UV-visible, viscometric techniques and molecular docking. MD simulation revealed stable binding of LH with SS-DNA. Anti-bacterial investigation revealed 2 to be generally the most potent, especially against Sa and Ab, i.e. having the lowest MIC values (≤0.25 µg/mL) compared to the standard anti-biotics vancomycin-HCl (MIC = 1 µg/mL) and colistin-sulphate (MIC = 0.25 µg/mL). Similarly, the anti-fungal profile shows 2 exhibits 100% inhibition against Ca and Cn fungal strains and has MIC values (≤0.25 µg/mL) comparatively lower than standard drug fluconazole (0.125 and 8 µg/mL for Ca and Cn, respectively). Compound 2 has the greatest activity with CC50 ≤ 25 µg/mL and HC50 > 32 µg/mL performed against HEC239 and RBC cell lines. The anti-cancer potential was assessed against the MG-U87 cell line, using cisplatin as the standard (133 µM), indicates 2 displays the greatest activity (IC50: 5.521 µM) at a 5 µM dose. The greatest anti-leishmanial potential was observed for 2 (87.75 at 1000 µg/mL) in comparison to amphotericin B (90.67). The biological assay correlates with the observed maximum of 89% scavenging activity exhibited by 2. The Swiss-ADME data publicised the screened compounds generally follow the rule of 5 of drug-likeness and have good bioavailability potential.


Asunto(s)
ADN , Simulación del Acoplamiento Molecular , Ácido Butírico , Línea Celular , ADN/química , Simulación por Computador , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA